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The unstable thermal interface 
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Department of Applied Mathematics and Theoretical Physics, Cambridge 

(Received 27 February 1967 and in revised form 17 October 1967) 

The motion which develops in a deep layer of a viscous, thermally conducting 
fluid initially hot below and cold above some horizontal plane, so that the system 
is gravitationally unstable, is studied by laboratory and numerical experiments. 
Three cases are considered: (i) the flow which occurs in a porous medium when the 
interface is the lower boundary of the system; (ii) a similar study in a viscous 
fluid; (iii) an interface distant from the confining horizontal boundaries, in a 
viscous fluid. In  all cases the initial development of the flow-assuming an initial 
source of noise, for example as temperature fluctuations-occurs within the ther- 
mal interface between the hot and cold fluid. The scale of the motion is set by the 
thickness of the interface. 

The development of the disturbances in the interface involves: a period of 
local thickening and induced, damped motions in which the diffusion of heat and 
vorticity dominate; a period of gestation, involving rapid amplification, with 
the disturbance imbedded in the interface and diminishing importance of the 
role of diffusion of heat; a period of emergence of the disturbances from the inter- 
face, during which the accelerations are sufficiently rapid for molecular processes 
to be unimportant, entrainment being the dominant process, and the gravita- 
tional energy accumulated locally in the interface is largely removed; and finally 
a period of adjustment of the large eddies. The amplification process is adequately 
described by the linearized equations of motion. 

1. Introduction 
The motion of a layer which is unstably stratified is an archetypal problem in 

the theory of flows driven by buoyancy forces. There are two classic problems 
of this type, each of which presents an extreme situation. The first case is the 
Rayleigh-Taylor problem, the simplest version of which considers two semi- 
infinite layers of fluid between which there is a sharp interface and across which 
diffusion of momentum and density is ignored. If the upper fluid is denser than 
the lower fluid the situation is clearly unconditionally unstable. The second case 
is the BBnard-Rayleigh problem, in which the ‘interface’ is a broad region of 
more or less uniform unstable density gradient, more or less confined above and 
below. The essential feature of this flow is the combined stabilizing action of the 
diffusion of both momentum and density. Between these two extreme situations 
there is a wide class of flows. The problem which has motivated this study is one 
of them. 

Consider, for example, the situation sketched in figure 1, a layer of fluid made 
unstable by heating a lower portion. Let us allow diffusion of both momentum 
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and density. For a time the initially sharp density interface will spread by molecu- 
lar diffusion but there is the possibility once the interfacial region becomes suffi- 
ciently thick, that any disturbances which are present will grow in the inter- 
facial region. We would then have a BBnard-Rayleigh type of problem. On the 
other hand, the layer as a whole is unstable and it is inevitable that the interface 
will ultimately become disrupted. We would then have a Rayleigh-Taylor type 
of problem. It is of interest to investigate how these two processes are linked 
together. As we shall see, in the development of the flows discussed below, there 
is a progressive change from dominance of the flow by diffusion of both momen- 
tum and density and then a loss of importance of first, diffusion of density and 
secondly of momentum till entrainment processes become dominant and the 
interface is disrupted. 

The object of our study is the growth of disturbances in a thin thermal layer. 
If the layer is attached to a boundary I shall refer to it as the proto-sublayer. 
The experimental and numerical results are collected in $$4-6, followed by a 
rather heuristic analysis and assessment of the results in $07 and 8. Finally 
$9 gives a discussion of the role of the thermal sublayer in thermal turbulence 
in the light of the present results. 

2. Statement of the problem 
Let us consider the situation sketched in figure 1, a body of fluid of depth H 

bounded above and below by horizontal, rigid, conducting walls and bounded 
on the sides by vertical, rigid, insulating walls a distance 1H apart where 1 > 1. 
The fluid is at  a uniform temperature To and is at rest. At time t = 0 a lower 
portion of the fluid of depth hH has its temperature increased to To + AT( 1 + B), 
where e is a random function of position and time and the lower surface 2 = 0 is 
subsequently held, in general, at the temperature To +AT( 1 + e (x ,  0 ,  t ) ) .  We 
restrict the investigation to the development of the consequent two-dimensional 
motions in which the velocities are confined to the (2, 2)-plane. 

Two closely related problems are discussed. The first is for flow in a porous 
medium or Hele-Shaw cell; the second is in a viscous fluid. In  a porous medium 
vorticity is generated by the horizontal gradient of the buoyancy force and heat is 
transferred by diffusion and advection. A viscous fluid allows the additional 
processes of diffusion and advection of vorticity. 

In a porous medium, inspection of the field equations show that the flow is 
specified by the aspect ratios, 1, h and 

kygATlv, K ,  H ,  
where k is the permeability, y the coefficient of cubical expansion, g the gravita- 
tional acceleration, v the kinematic viscosity, and K is the thermal diffusivity of 
the fluidi-. Hence, since these quantities involve only length and time the system 
is, in addition to the aspect ratios, defined by the single parameter 

A = kygATH/Kv (Rayleigh number). 

t Since all the experiments for this case were in a Hele-Shaw cell rather than in a 
porous medium, K is strictly the thermal diffusivity of the fluid, which is not the case in 
a porous medium. 



The unstable thermal interface 71 

It will be convenient to chose units of length, velocity and temperature: H ,  
K / H ,  AT so that subsequently, unless stated to the contrary, all quantities are 
dimensionless. We shall also often refer to the horizontally averaged properties 
of the sublayer in terms of its thickness S ( z 2 4  for most of the present study), 
the dimensionless heat transfer coefficient N ,  the Nusselt number, and the hori- 
zontally averaged vertical temperature gradient p = p(z, t) .  The subscripts c ,  
00 refer to the critical state in which a disturbance can first grow and to the state 
as t-+co. 

e=o Conductor 
42 1- 

I 'Streamlines I 
I 

. I 
0 'x 19=1+e Conductor I 

FIGURE 1. Diagram of the container, the Cartesian co-ordinate system and typical undis- 
turbed vertical temperature profile at a time t > 0. Length unit H ,  the layer depth. 

The field equations (Wooding 1957) for the temperature 8 and streamfunc- 
tion @ for two-dimensional motion in a porous medium, in dimensionless form, 
reduce to 

w = AO,, ( la)  

VZ$ = w ,  (1b) 

ae 
- = v2e- a($, e) ,  
at 

where the velocity q = ( -  $z, $,) and the vorticity w = -30 where 5 is unit 
vector parallel to the y-axis. The boundary conditions are: 21. = 0 on the walls; 
8 = 1 +s(z, 0, t ) ,  0 on z = 0 , l ;  and 0, = 0 on x = 0 , l .  The initial conditions are: 
@ = 0; 8 = 0 for z > h; 8 = 1 + s(x,  z, 0) for z < h. Throughout, E is arandom func- 
tion, with a white spectrum, of zero mean and r.m.5. amplitude E'. Note that ex- 
cept in $ 6  we shall study only the case h = 0. 

In  a viscous fluid the system is similarly defined by 

A* = y g A T H 3 / ~ v  (Rayleigh number), 

cr = Y / K  (Prandtl number), 

and the field equations are the same as (1) except that the vorticity equation 
(1 a) becomes 

( 2 )  

We note that here, while we have the additional processes of diffusion and ad- 
vection of vorticity, if cr is sufficiently large the only extra process is the diffusion 
of vorticity. 

aw 
at 
- = OV'W + aA*B, - a(@, w ) .  
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In  order to see the relation of this to previous studies consider for the moment 
the gross features of the development for the case h = 0. Initially all the ambient 
fluid is at temperature zero, but after a dimensionless time? of order 1/N, the 
mean temperature of nearly all the fluid is a t  a temperature near 0-5. The de- 
velopment of such a flow is summarized in figure 2 which shows a typical gross 
feature of the flow, $m, the maximum absolute value of 11. over the flow space as a 
function of time. For the period of order 102A*-f there is rapid increase of the 
mass transport, after which the system approaches statistical equilibrium. The 
wiggly record with values of $m ranging of order ~t 20 yo about its temporal mean 
is then maintained. The flow as t +  00 is characterized by an intermittently un- 
stable sublayer and an interior dominated by eddies of length scale H .  Previous 

FIQIJRE 2. Development of the flows as a whole. Free convection in a viscous fluid at 
A* = 106, r~ = 1, I = 2, e’ = 0-2. Maximum absolute value of the streamfunction @,(t). 

numerical simulations (e.g. Deardroff & Willis 1965; Elder 1967a,b) of these 
flows shows, provided temperature fluctuations are maintained at the walls, 
that the gross features of the flow, for example, the development of the mean 
temperature and the r.m.s. temperature fluctuations, are in reasonable agreement 
with experiment. These studies have dealt largely with this latter statistically 
steady r6gime. Here we wish to concentrate attention on the early stages of the 
development in which the proto-sublayer is completely dominant. 

In  thermal turbulence we know from experiment that the heat transferred 
across the layer for a given AT is independent of the spacing of the plates as are 
the gross features of the sublayer. We expect here, too, that the early stages of 
development of the proto-sublayer will be independent of H.  It may therefore 
seem silly to choose H as a length scale. In  practice, however, both numerically 
and in the laboratory the depth of fluid is finite. But more important, the choice 
is very convenient because it provides a check on our predictions since in dimen- 
sional form they must be independent of H.  For example, the system of equations 
(1 b, c) and ( 2 )  have the same form under a change of units of length and time to 
6 and S2 except that in the buoyancy term A* is replaced by A*S3. We can choose S 
such that S cc A*-$. The corresponding time unit is A*-%. This is consistent with 

N ,  x O-O8A** is the Nusselt number in the statistically steady state realized as 
t + a .  
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our expectation that the layer will become unstable when = A,* = constant 
and the time of onset of amplification t, oc 62, and horizontal wavelength h at 
the first appearance of motion at time t ,  is given by h2 cc t,. 

3. Experimental results in a Hele-Shaw cell 
The experiments in Hele-Shaw cells have covered the range A = 0-2000, 

I = 1-10. These experiments are very convenient when the growing disturbances 
have become large, but a study of the initial development is very difficult. Hence 
most of the detailed studies have been made numerically. The techniques and 
apparatus used here are closeIy similar to those of a previous study (Elder 1 9 6 7 ~ ) .  
The Hele-Shaw cells were made of perspex and the silicon oil MS 200/100 cs 
was used. Two geometries were used: (i) plate spacing, a = 4mm, H = 4cm; 
(ii) a = 1 mm, H = 6 em. Note that the permeability k = &a2. 

FIGURE 5 .  Wavelength h at time of first appearance t ,  in a Hele-Shaw cell, 

The gross features of the development to the statistically steady state are 
illustrated in the photographic sequence of figure 3, plate 1, which shows a 
layer uniformly heated from below at A = 250. The first striking development is 
the array of blobs rapidly growing above the lower surface. This is followed by 
the gradual appearance of a large-scale cellular pattern of ever changing eddies. 
This latter stage is not our present concern. The second photographic sequence, 
shown in figure 4, plate 2,  is a close up of the proto-sublayer showing the early 
development of the eddies embedded in the layer. 

Observation of the proto-sublayer clearly demonstrates that the disturbances 
remain embedded in the proto-sublayer until they reach a finite amplitude. 
During this time the remaining ambient fluid is still very nearly at rest. The 
scale of the flow is therefore dominated by the scale S of the proto-sublayer. 
This is the essential fact revealed by this study. Quantitative evidence for this 
statement is presented in figure 5, which shows the mean horizontal wavelength h 
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of the disturbance pattern as a function of the time of first appearance of mo- 
tion t,. The wavelength was determined by counting the total number of eddies 
n and evaluating h = l/n. The time t ,  is rather difficult to determine and there is 
no doubt that the eddying motions are already well established by the time they 
are noticed. Different values oft, are arranged by repeating the experiment at 
different values of AT.  The data show, within the rather poor experimental 
accuracy, reasonable correlation with the expected relation h2/t, z constant. 
The correlation of figure 5 does not involve v. This is very nice since it avoids the 
complicating factor of v being a function of temperature which needs considera- 
tions not of immediate concern in this paper. An investigation of the role of v(T) 
in several convective systems is in progress but a single example should serve 
as a warning to the reader. Experiments in a viscous fluid with large values of AT 
using medicinal paraffin, for which v cc T-4 (5" in "C), show that the time t,  of 
visible onset of motion, which is proportional to AT-% for an ideal fluid, is more 
nearly like AT-2, which is the result of an ideal fluid in a porous medium. 

These experiments reveal the same qualitative features as those found in the ex- 
periments of Spangenberg & Rowland (1961) and Foster (1965a), both of whom 
studied a layer of water cooling from above. In  spite of their cruder visualization 
techniques they showed that in deep layers the process was independent of H 
and that the critical proto-sublayer Rayleigh number was similar to that given 
by the Rayleigh stability theory. 

4. The proto-sublayer in a porous medium: numerical results 
The numerical experiments with the simulated flows in a porous medium have 

partially covered the range: A = 0-1600; 1 = 1-5; e' = 0-0.5. Solutions were 
always possible provided the smallest scale to be represented-which is 6, the 
sublayer thickness-was not less than 1 mesh interval. The results will be merely 
presented here and discussed in $7 .  The finite difference technique used is 
identical to that previously used by the author (Elder 1 9 6 7 ~ ) .  Poisson's equation 
is solved by a slightly modified successive over-relaxation procedure. The time 
step is the so-called Eulerian one, a forward difference in time. The finite differ- 
ence application of the side wall boundary condition 8, = 0 was performed in a 
time-dependent manner. The mesh spacing was generally 1/40, but sufficiently 
different choices of it and the time step indicated that the solutions are reliable 
to within a few per cent. 

If either the Rayleigh number is small ( < 40), or the horizontally averaged 
vertical temperature gradient p = p (2,  t )  is zero, only a weak induced motion is 
possible. Further, if the only source of temperature fluctuations is on one of the 
horizontal walls, the induced motion is confined to a region near the wall. For 
example, the flow of figure 6 is for the case in which 8 = e(x,t) on z = 0. As we 
shall see below this is the type of motion generated immediately after t = 0 
regardless of the value of A .  

Provided A is sufficiently greater than the critical Rayleigh number A,  = 4n2 
(Lapwood 1948), for the proto-sublayer thickness 6 to be much less than unity, 
the proto-sublayer grows as if it were a t  the bottom of an infinitely deep layer of 



The unstable thermal interface 75 

fluid. Figures 7-9 show the state of the proto-sublayer at successive times for 
A = 200, 400, 800 for which N, z 5, 10, 20. At the earlier times we see a hori- 
zontally uniform thermal layer growing into the fluid, embedded in which are an 
array of eddies of roughly the same size and amplitude. At the later times, how- 
ever, the thermal layer has become grossly distorted where portions of it are 

$ 
FIGURE 6. Induced motion. Contours of fi/fim = 0.2, 0.6 where $m = 4 x for A = 1, 

B’ = 0.4, t = 0.01. 

$7- 8 e 

FIGURE 7. Time development of proto-sublayer in a porous medium: A = 200, Z = 4, 
at times: (a) 2 x ( G )  8 x In  this and subsequent figures the contours 
are at  intervals - 1(0.2)1 times the scale value of the field variable which is 1 for 0 and 
for $ is the value written on the figure. 

( b )  4 x 
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$053 8 

FIGURE 8. As for figure 7 :  A = 400, I = 1. (a )  t = 5 x (b)  t = 

i15 - 
(a) 

$ 2 4  

e 

e 
FIGURE 9. As for figure 7 :  A = 800, I = 1. (a)  t = 2.5 x In  this 
example thermal noise is allowed on both horizontal boundaries but the initial temperature 
of the fluid body is zero. 

(b )  t = 5 x 
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rising above the wall. The eddies are no longer embedded in the layer, and rapidly 
become separate entities. The geometry of figure 7 is the same as that of the photo- 
graphic sequence of figure 3. The two flows can be roughly compared by noting 
that in the numerical study t c z  so that figure 7 
shows the flow at t E (2,4, 8)t,, while for the laboratory study t, z 50sec so 
that the corresponding times are 100, 200, 400sec. An exact correspondence is 
not to be expected since the two noise sources are not identical. The flows at the 
other values of A ,  apart from a pronounced contraction of time scale with in- 
creasing A show essentially the same development. In  passing, it is worth 
noting, especially at the higher values of A ,  the tendency for amalgamation of 
eddies (see figure 9 b ) .  This tendency, which is also seen in the laboratory experi- 
ments, represents a broadening of the spatial spectrum of the velocity field to 
lower wave-numbers. Finally we note that during the proto-sublayer stage the 
initially larger eddies remain the larger eddies. 

(more precisely 0.88 x 

FIGURE 10. As for figure 9 but with the initial temperature of the fluid body at  0.5 and 
hence proto-sublayers on both z = 0 and z = 1 illustrating the independent growth of the 
two layers and the detailed difference of response to different sequences of noise impulses. 
A = 1600, t = 5~ 

That the fluid depth does not affect the initial development of the proto-layer 
is illustrated in figure 10. This shows a case in which the ambient fluid is at  6J = 4 
and 13 = el($, t )  on x = 1 and I3 = 1 + eo(x, t )  on x = 0 where el and e0 are obtained 
from different portions of the same array of bounded random numbers. Proto- 
sublayers grow independently for a period of order 1/A. This example also illus- 
trates two simple points. First, we must remember to compare sublayers by means 
of the Rayleigh number based on the temperature difference across the sublayer 
(note below, figure 12). Secondly, we see the difference between the details of 
the development of the two sublayers arising from two incoherent though other- 
wise equal noise sources. 

A summary of this development is presented in figure 11 which shows a typical 
gross parameter of the flow $-%(t), the maximum absolute value of $- over the 
mesh, as a function of time. We recognize three periods in the development: 
(i) gestation, (ii) growth, and (iii) flight. The gestation period, which in the ex- 
ample of figure 9 occupies a time interval t, of 0.8 x 10-3, involves two processes: 
the rapid establishment of an induced flow; followed by a period of quasi- 
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equilibrium. After a time of roughly at, the growth rate, within the numerical 
error, is closely exponential. The final exponential growth rates n = a(log 1C.,)/at, 
determined from such curves, are shown in figure 12. They fairly closely satisfy 
n/A2 = constant, again a result independent of H .  

( 6 )  0 2.5 t SxlO-’ 
FIGURE 11. Summary of the development of the proto-sublayer. The maximum value of 
the streamfunction @m(t) for the flow of figure 9, A = 800. (a)  linear scales; ( b )  log-linear 
scales. $m scaled to unity at t = 5 x multiply by 15.5 to obtain actual values. 
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1 4  

10 
lo2 lo3 A 

FIGURE 12. Exponential growth rate in a porous medium: n = a(log $+,J/at as a function 
of -4. Initial body fluid temperature: 0, 0 = 0; +, 8 = 0.5, points plotted at &A. 

5. The proto-sublayer in a viscous fluid: numerical results? 
Numerical experiments on the proto-sublayer in a, viscous fluid have partially 

explored the range A* = 0-109, 1 = 1-5, e' = 0-0.5, but have for the present 
purpose been restricted to c = 1. The development of the proto-sublayer is 
shown in figures 13 and 14 at two successive times for A* = lo6, lo7 for which 
Nm z 10, 20. These figures should be compared with figures 8 and 9 with which 
they are very similar. Figure 13 shows part of the interval of exponential growth 
during which the disturbances remain embedded in the growing thermal layer. 
Distortions of the temperature field begin to be noticeable at  t = 4 x 10-3, in 
figure 13 b.  On the other hand, the data selected for figure 14 show the final period 
of growth and eruption. In this calculation the time step has purposely been 
chosen about as large as possible, without the solution diverging, to simulate the 
rather spotty temperature fields found in the laboratory in poorly controlled 
experiments where, in particular, 6' is large and variable. The gross development 
of the proto-sublayer is illustrated in figure 15, which should be compared with 

t The only feature required in addition to the technique of $ 4  is the method of 
applying the boundary conditions on w .  We use the well-known method of stepping (2) 
forward in time only on the interior points and then evaluating w on the walls from 
(1 b)  but with the operation written for the case of the normal derivate @,, = 0. These 
results are collected here for convenience; the reader may prefer to go directly to the dis- 
cussion of $ 7  and refer to $55 and 6 later, as required. 
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160.45 

r - 
6 

FIGURE 13. Time development of the proto-sublayer in a viscous fluid with A = lo6; F = 1. 
Streamfunction $, the temperature 8 at times: (a) t = 2 x Period 
of exponential growth. 

( b )  t = 4 x 

11-245 6 

FIGURE 14. Time development of the  proto-sublayer in a viscous fluid with A = 10’; 
rn = 1 ~ Rt,ren.mfiinotion & and temDerature 8 at times: (a)  t = Final ( b )  t = 2 x 
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0 t 2 ~ 1 0 - ~  
(a) 

( b )  

FIGURE 15. Summary of  the development of the proto-sublayer in a viscous fluid at A = lo7, 
IT = 1 as shown in figure 14. The maximum value of the streamfunction @,J t )  : (a) linear scales ; 
( b )  log-linear scales. 

$4.6 e 
FIGURE 16. Growth of  non-time varying disturbance with E = 0.1 sin (474, 

6 Fluid Mech. 32 

A = 106, t = 4 x 10-3. 
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figure 11. The processes of advection and diffusion of vorticity do not seem to 
have made much qualitative difference ! 

A number of other experiments have been made to study crudely the role of 
the spatial spectrum of the temperature fluctuations specified on the boundary. 

$2 2 0 

$0.48 8 
FIGURE 17. Growth of an individual blob at A = lo6, = 1 showing the entrainment into 

the blob. Heater width 1/8, B = 0.1: (a)  t = 2 x ( b )  t = 4 x (c) 6 x 

The data of figure 16 show the case E oc sin kx: a non-time varying spatial modu- 
lation of the temperature of the lower wall. The data of figure 17 show the 
case E = constant over a small region of extent 8, in the middle of the lower wall. 
Both of these ‘fixed’ sources lead to the same development and exponential 
growth rates as that of the random noise. The major difference between the flows 
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of figures 13, 16 and 17, which are all at A = lo6, is in the greater disturbance 
amplitude. This is simply a consequence of the fact that the fastest growing dis- 
turbance has a length scale of order 6 so that in effect the large content of B in 
other scales, in the flow of figure 13, is filtered out. Throughout the numerical 
study we have mainly used E' = 0.2, a rather large value. This choice is largely 
dictated by computer time since, although the growth rates are exponential, the 
time to grow to finite amplitude increases rapidly as d is reduced. 

The flow of figure 17 leads t o  the production of an isolated blob and nicely 
shows the entrainment field about the rising blob. The blob has already lifted 
itself above the bottom surface at  t = 6 x lo3 as shown in figure 17c. 

m 
6 

jho.56 6 

FIGURE 18. Time development of a free interface in a viscous fluid with h = 0.5, A = lo6, 
cr = 1. Streamfunction ?,h and temperature 6' at  times: (a)  t = ( b )  t = 2 x  
(c) t = 4~ 10-3. 

6-2 



84 J .  W .  Elder 

6. The isolated thermal interface in a viscous fluid: numerical results 
In  the course of trying to understand the mechanism that determines the initial 

distortions of the thermal layer and, in particular, what process sets the horizontal 
scale of the distortions it occurred to me that the problem had much in common 
with the Rayleigh-Taylor problem. Hence a number of numerical experiments 
were performed to clarify this idea. Here the thermal interface is placed away 
from the horizontal boundaries. A lower portion of depth h of the fluid layer is 
initially at  rest a t  temperature (1 + B ) .  We are interested in the horizontal scales 
of the subsequent motions at  various h and expect qualitative similarity in the 
motions regardless of h and in particular with h = 0. 

10 

&,I 

3 

0.1 I 

I I I 

0 2 t 4 ~ 1 0 - ~  
FIGURE 19. Summary of the development of the flow in a free interface a t  A = lo6, 

= 1 as shown in figure 18; the maximum value of the streamfunction @&). 

The development of a free interface in a viscous fluid is illustrated in figure 18 
where h = +. Again we see the same development of the flow. At time t = 

as seen in figure 18a, the temperature distribution is only weakly disturbed. 
Effects arising from the initial noise in h < $ are still apparent. The induced flow 
is distributed throughout the lower layer but the maximum transports are al- 
ready in the interface. By the time t = 2 x in figure 18 b the dominant growth 
in the interface is clearly seen and noticeable distortions of the temperature field 
are apparent. The flow at time t = 4 x in figure 18c is sufficiently strong to 
produce violent distortions of the interface. We observe that the dominant 
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scales of motion have the scale of the interface. A summary of the development is 
shown in figure 19, which should be compared with figure 11. 

Finally we show in figure 20, that the development is little influenced by the 
distance h of the interface from a wall unless h < 8,. The gross features of the three 
flows are very similar: the length scales are similar and there is little difference in 
the total transport $m. The flow of figure 2Oc is somewhat different in so far as the 
plunging colder blobs are nearly impacting the lower surface, the constraint of 
which gives a little more regularity to the flow. 

I n 

e 

$35 e 
FIGURE 20. The role of the presence of the wall on the development of a free interface. 
The streamfunction @ and temperature 0 for A = lo7, 
for various interface positions: (a) h = 4; ( b )  h = t ;  (c) h = $. Compare with figure 18 
to see how the development is influenced by A .  Compare with figure 14 where h = 0. 

= 1, e' = 0.04 at time t = 
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7. Analysis of the results 
We have seen a few of the possible flows produced by unstable thermal inter- 

faces. Now let us consider a number of simple theoretical models which will ex- 
pose the main interactions in these flows. As we shall see, the amplification pro- 
cess can be adequately understood using the linearized equations of motion. 
This is perhaps no surprise, many of the deductions being readily adapted from, 
for example, the discussions in the tome by Chandrasekhar (1961). Only a sketch 
of the analysis is attempted here, the numerous details are a problem for the 
analyst. We discuss each of the flows in turn giving the fullest treatment to the 
proto-sublayer in a porous medium, the other cases being very similar. 

(a) The proto-sublayer in a porous medium 

Let us consider the development of the proto-sublayer at the base of a slab of 
fluid saturated porous material. If we restrict our attention to the time interval 
during which the disturbances are sufficiently small to neglect quantities of 
second order in the disturbance amplitudes, the equations of motion are linear. 
If at t = 0 the disturbance amplitudes are zero and there are no temperature 
fluctuations permitted on the walls, no disturbances are possible? and we have 
the solution of (1): 8 = 0 ( z ) ;  @ = 0 where 

ao 
- = 0,. 
at (3) 

This is the ordinary heat conduction equation (Carslaw & Jaeger 1959, $2.4) 

(4) 
with the solution 0 = erfc (z ld) ,  

where 

If, however, a t  t = 0 the disturbance amplitudes are non-zero (say, for example, 
there are temperature fluctuations on the walls) we can write the temperature$ 
as (0 + O ) ,  where, neglecting a(@, 19) which for a range oft  will be much less than 
V28 or aelat, we have 

d = &(t) = 2 4 .  

ae 
- at = v2e-p$x. (5) 

Here 

is the local vertical temperature gradient of the undisturbed temperature pro- 
file. In  this approximation, all the heat from the wall continually accumulates in 
a horizontal layer and the growth of the temperature fluctuations is set by the net 
effect of thermal diffusion of the fluctuations and vertical advection by the verti- 
cal velocity fluctuations acting on the undisturbed temperature profile. Finally, 
since (1 a )  is a linear equation, with no approximation, 

p = p(x, t )  = 0, = - (2/nd)e-(z/d)' ( 6 )  

V2@ = A@,. (7 )  

t This seems to me to be a trivial point, but is not generally as well appreciated as i t  

1 The use of 8 here for the temperature fluctuation should not lead to confusion with 
shoulr? be. In the numerical experiments if E = 0 the solutions are those of (3). 

8 used elsewhere. 
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(i) The initial period of induced motion? 

If we consider the case in which the only source of noise is temperature fluctua- 
tions, so that at t = 0 we have 9 = 0, there will be a period of time during which 
p$% < V20. There is then no feedback from the velocity field to the temperature 
field and the flow is simply an induced one. In  particular, this induced flow is 
independent of the growth of the mean temperature field. For the case in which 
the only source of temperature fluctuations is on the walls the induced motion is 
confined to a region near the wall. Each spectral component of the wall tempera- 
ture fluctuations e(z, t) is exponentially attenuated with depth of penetration 
into the fluid: a spectral component of E of circular frequency w penetrates the 
fluid to a depth of order (2/w)4 (Carslaw & Jaeger 1959, $2.6). In  other words, 
because of the finite thermal diffusivity of the fluid, the noise at  the wall passes 
into the fluid through a coarsely tuned low-pass filter. An example of such 
induced flow has been shown in figure 6. 

(ii) T h e  period of gestation 

During the initial period the layer has been so thin as to be completely domi- 
nated by conduction, but as the layer grows we have the possibility of the in- 
creasing importance of the vertical advection of heat by the velocity fluctuations 
described by the term -/3$z. Hence from (5) and (7) we have L$ = LO = 0 
where 

Although we have a linear problem, a full treatment with ,8 = P(z ,  t) would be 
very complicated. The most complete analysis for the corresponding problem in 
a viscous fluid is that of Foster (1965 b )  who uses a spatial spectral representation 
of $ and 8, the spectral amplitudes being time dependent. 

The earlier analysis of Morton (1957) assumes a/3/at = 0 but the derivations, 
which are referred only to moderate values of A,  have been questioned by Foster 
(1965b).  The essence of what is done here follows from the observation in the 
laboratory and numerical experiments that the scales of the growing disturb- 
ances are those of the growing thermal layer. 

Consider a possible spectral component: 

+ =  sinkzsinmz$(t); m/n= 1,2,.. . ,  

so that, 

Now it is clear, provided ( -PA)  is sufficiently large, that $t > 0 and amplifica- 
tion is possible. On the other hand, in regions where ( -PA)  is small or zero, 
amplificationisimpossible and the only possible motions are damped. We therefore 
make the gross assumption that to a first approximation the growth rates can be 

t I n  passing, it should be remarked that during this interval there is a somewhat similar 
period of adjustment in the numerical simulation, given by 24t x d' where d' is the mesh 
spacing. For the data of figure 11 this time is about Beyond this time the induced 
flow is seen to be in (numerical) equilibrium with the noise source. 
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calculated by setting p ( z ,  t )  = - 1/6(t) for 0 < x < 6(t) and p ( z ,  t )  = 0 for z > 6(t) ,  
where 6 = ad and a is a fudge factor of O(1) describing the net effect of non- 
uniformity of p. In  addition, we assume that motion is restricted to the region 
0 < x < 6. In other words, inspection of (10) shows us that amplification of a given 
spectral component is only possible in those parts of the field where ( - P A )  is 
sufficiently large, so that we expect the motion to be largely confined to the 
region 0 < z < 6. Hence: for z > 6we have @ = 8 = 0; for 0 6 x < 6, (9) and (10) 
apply but we rewrite m = 7r/6 (1,2,3,  ...). Since the growth rate is largest for the 
smallest possible value of rn we take m = n,l6 henceforth. We note in passing 
that in the corresponding Rayleigh-BBnard type of problem, which determines 
the least value of A for which any motion is possible, we could put p = - 1 with 
little error. This is Morton’s (1957) principal result. 

Let us first estimate the time a t  which amplification will commence, that is, 
when at least one component can grow. This is simply the classic stability problem 
of the BBnard-Rayleigh type which was first evaluated for flow in a porous 
medium by Horton & Rogers (1945) and Lapwood (1948). From (lo), 

(m’+ k2)2 = -pAk2, (11) 

so that growth is first possible when ( - P A )  = A,  = 47r2 for m = k .  Hence, since 
d = 2a4t the critical time t, is given by (see also Elder 1967c, $4), 

t, = (Ac/A)2/4a2. (12) 

(iii) Superexponential growth 
For t > t, amplification is possible. The analysis of the interval immediately 

after t = t, is difficult because pt + 0. This is simply because since n = 0 at t = t, 
there will always be an interval in which the growth rate n is very small compared 
to the effects of pi. We can, however, crudely understand the process by means of 
the following rather heuristic argument. 

- - 

I I I I 

0 7 50 
FIGURE 21. Variation of exponential growth rate n as a function of time given by 

(144 for a proto-sublayer in a Hele-Sham- cell. 

We notice that the first disturbance to be amplified satisfies k = m. Let us 
therefore assume that the dominant disturbance has k = m, at any time t im- 
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pose such a disturbance, and ask what its growth rate, n = a log $/at would be. 
Hence in (10) we write k = m = n-18, ( 1 3 4  

so that n = (AS- 4r2)/2S2. (13 b )  

n = t(A/A,)2$nz(7),  (14a) 

where $, = 7-8 ---I. (14b) 

Writing r = t/t, so that 6 = S,d we have 

The form of n(r) is sketched in figure 21. We notice that there is a very rapid 
increase of q5m to a maximum of 0-25 at r = 4 (i.e. 6 = 28,) followed by a very 
gradual decrease. This result suggests that in an interval following the first 
appearance of amplification, growth is superexponential. This is a consequence 
of the growth of the mean profile. In  BBnard-Rayleigh convection where the 
mean profile is time independent, growth rates are (initially) exponential, but 
here the effective Rayleigh number AS3 cc tg is also increasing. 

(iv) Quasi-equilibrium 

Beyond r = 4, as r becomes larger the change in n over a given interval of time 
becomes smaller, so that provided A is sufficiently greater than A, for n to be 
large the system behaves as if it were in quasi-equilibrium. Note in (13 b) that as 
6 increases we have 

n N $(l/S)A. 

Now this result is precisely the same as that obtained by putting ap/at = 0. If 
we had assumed ap/at = 0 at the outset we would argue that in (11) if PA is 
large so that n is also large, we can neglect the term (m2 + k2)  in relation to n and 
obtain (15). The neglect of this term implies that the thermal diffusion of tem- 
perature disturbances is negligible. 

It follows that during the period of superexponential growth the role of thermal 
diffusion has been progressively diminishing relative to that of the vertical 
advection of heat by the vertical velocity fluctuations acting on the mean tem- 
perature field. Also we see that the quasi-equilibrium state is only reached after 
the role of thermal diffusion has become negligible. 

(15) 

The result (15) has the form we would expect. Since 

p = -11s and A(6) = AS = A , d ,  

we have n = &A2/ACr*. 

This result in dimensional form is independent of H as it must be if A is sufficiently 
large. 

(v) Birth and jlight 
During the period of gestation the disturbance has been embedded in the proto- 

sublayer. That is to say the eddies only occupy a region of extent 6. But as the 
disturbance amplitudes become larger and 0 becomes O( l), gross distortions of 
the proto-sublayer temperature field become noticeable and the eddies begin 
to emerge from the layer. In  the data of figure 11 this time is of order 2.5 x 
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during which time the disturbance streamfunction has been amplified by a factor 
of about 25. The layer is now dominated by the buoyancy forces and the eddies 
are accelerated out of the layer. Heat is transferred out of the layer by advection 
of the temperature fluctuations by the velocity fluctuations. 

Linear analysis is no longer adequate during this eruptive phase. We can, how- 
ever, make one further important deduction. The curved dotted line shown in 
figure 11, which is a line +,It = constant, suggests that the blobs are uniformly 
accelerated out of the layer. But in a porous medium the inertial accelerations 
play no role in the dynamics. Hence an explanation other than that of a free 
flight must be sought. If we can identify the mean temperature 9 of a blob, then 
directly from the vertical momentum equation the mean vertical velocity 
W = A9. If awlat + constant, then a9/at .i. constant. Hence during the initial 
period of blob production, fluid from progressively deeper in the sublayer must 
be entrained into the blob. This process locally thins the sublayer surrounding 
the blob and continues till the sublayer is largely denuded. The disturbance 
grows a further order of magnitude (in figure 11) in this interval. At this time the 
blob has become a discrete and separate entity and rises above the layer with 
nearly constant velocity. Thence the blob reacts with the ambient environment 
largely by entraining cold ambient fluid. 

Thus the gravitational energy which has been accumulating in the sublayer 
during the gestation period is in this final phase rapidly entrained into the grow- 
ing blobs before being released into the ambient fluid. 

The problem of the rise of a buoyant element through fluid initially at rest 
has been studied by many people. For example there are the notable experi- 
mental studies of Turner (e.g. 1963) and the numerical work of Lilly (e.g. 1964, 
which has a good bibliography). As far as I am aware, these studies only consider 
the subsequent development of a given blob, and are not concerned with its 
origin. It is here that the present work is rather interesting for it reveals, a t  least 
in outline, the mechanism of accumulation of buoyancy in the blob and gives 
some idea of the process of eruption. The process of blob production is seen as 
gradual but inevitable. One wonders if a similar process of increasing dominance 
of entrainment over diffusion is responsible for the origin of buoyant elements, 
such as thermals, in the lower atmosphere. 

( b )  The proto-sublayer in a viscous JEuid 

The development of the proto-sublayer in a viscous fluid can be discussed in a 
similar manner. The only additional feature in the linearized equations is the 
term representing the diffusion of vorticity, the advection of vorticity being a 
term of second order. The secular equation for a single spectral component is now 

[n+(m2+k2)][(n/c)+(m2+k2)](m2+k2) = /3A*k2. (17 )  
For free boundaries, we have (Rayleigh 1916) n = 0 first for 

( - P A * )  = A: =27n4/4 and m = J2k. 

Also the critical time 
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n2 - +a( -@A*).  (19)  

and the growth rate for large A* and g z 1 is 

Solutions for other values of cr are readily obtained from (17).t  Both these 
results, in dimensional form, are independent of H .  

During the superexponential period, as in the case of a porous medium we 
write in (17):  m2 = 2k2; m = n-./S; 6 = Sc7* and note that A: = Y7r4 = A*8,3 so 
that for example in the case of g = 1, 

where 
1 1  

f j y ( T )  = - - -. 
Tf 7 

Thus q4(7) has the same qualitative form as (14b) in a porous medium. 

(c )  The isolated thermal interface in a viscousJEuid 

The form of the above expressions (15)  and (19)  for the growth rates is rather 
similar to that found in the simplest version of the Rayleigh-Taylor problem in 
which we consider the initial distortion of a sharp interface between two fluids 
when the upper fluid is denser than the lower fluid. If we can neglect both the 
diffusion of density and of vorticity we have the simpleresult of Rayleigh (1900)) 
expressed in terms of our present units, 

n2 = &aA*k, (21)  

where as above k is the horizontal wave-number of the disturbance.$ Strictly 
(21)  applies only to two perfect immiscible fluids. For real fluids we must argue 
that provided the development of the instability is sufficiently rapid we can ignore 
the diffusion of density and vorticity. But this can never be true in the period 
immediately following t = 0, when the rate of diffusion across the interface is 
highest. However, during this period disturbances can also grow in the ‘inter- 
face ’ itself. Now we see how the scale k of the interfacial distortion is determined ! 
It is determined by the scale of the disturbances in the ‘interface ’. The expression 
(21)  indicates that the most rapidly growing distortion of the interface is that 
with the smallest length scale. But the smallest length scale is the scale of the 
interface and since the dominant scale of the disturbance in the interface is that 
which grows most rapidly, that has a scale of order 6. The expressions (19)  and 
(21)  are indeed equivalent if we place k = +/S. 

The numerical experiment presented in figure 20 clearly demonstrates that the 
initial growth of the interfacial distortions are set by 6 and not by the other pos- 
sible scales, namely, the scale of the initially imposed temperature fluctuations 
or of the distance h from the wall. 

t Writing n = yA%/Ai and p = 37r2/2AQ we have (y +p) ([yla] +p)  = +. Note for + co 
we have y - +p so that n is independent of a. 

1 It would be ridiculous generally to write the result in this form, but in this paper we 
are interested in the combined role of K and v. The expression in dimensional form 
n * 2  = +gkAp/p does not involve K or v. See also the paper by Bellman & Pennington (1954). 
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8. Comparison of results 
It is of interest to compare the numerous results we have obtained. The 

essentially phenomenological models of Q 7 involve : the Rayleigh number, A 
or A*; a fudge factor a which allows for the fact that the shape of the temperature 
profile is not linear; a critical Rayleigh number, A, or A:, which here, for want of 
a better choice, we take as the value given by the corresponding BBnard-Rayleigh 
problem; and a time-dependent function $17) which crudely represents the com- 
bined influences of growth of the temperature profile and growth of the dis- 
turbances. The latter three factors are not precisely predicted by the model of 

(i) Porous) (ii) Viscous (iii) Isolated 

A or A* 400 800 106 107 

1.35 x 10-3 3.5 x 10-4 1.44 x 10-3 3.1 x 10-4 
a2t,, 3 7  2.5 10-3 6.25 x 10-4 2.67 x 10-3 5.7 x 10-3 

t l  

1 /a% 0.54 0.56 0.54 0.55 
noba 342 1610 680 3500 

n/#, 37 2000 8000 1800 8400 
4 0.17 0.20 0.38 0-42 

- 
106 lo7 Note 

7.2 x 10-4 1 . 8 ~  10-4 a 
1.96 x 4.2 x lo-* b 

0.37 0-43 C 

1140 4500 a 
1960 9100 b 
0.58 0.50 C 

L- v ---Y----J -v 
#m*x 0.25 0.47 0.47 
A ,  40 1100 650 d 

TABLE 1. Comparison of time scales, critical time t and exponential growth rate m, ob- 
tained by numerical experiment and the results of J 7 for three flows : (i) porous medium; 
(ii) viscous fluid; (iii) isolated interface in a viscous fluid with h = 4: a t  pairs of Rayleigh 
numbers, A. The fudge factor a d/ZJt. The maximum possible value of # given in $7 
and the value of A ,  used are also shown. All these results are for a mesh spacing of 1/40 
and a noise level of E' = 0.2. 

Note: a, numerical values; b, obtained from (14) or (20) using ( d ) ;  c, (result a)/(result b). 

Q 7 principally because of the crude representation of the temperature profile. 
Close comparison with the numerical experiments is therefore not to be expected. 
Nevertheless, all the results show sufficient consistency to suggest, provided 
that we use the numerically determined value of a, that extrapolation of these 
results, in particular to other Rayleigh numbers, will be correct to better than 
k 20 yo. The correlation of the results is displayed in table 1, which shows data 
from six numerical experiments and the corresponding results from $7.  The 
numerical values of t ,  can be found to about t- 10 yo and n to about t 5 yo. The 
choice of Rayleigh numbers is dictated by computer time and the need to repre- 
sent adequately the interface spatially. 

We would expect the role of A to be well represented as it is for the critical 
times and the growth rates. For example, the data of figure 12 show n/A2 z 
constant as required by (14). On this point our results for a viscous fluid are in 
close agreement with the data given by Foster (1965). The relation t ,(A*) 
estimated from Foster's figure 6 gives a(logt,)/a(logA*) = -0.68 close to the 
above - 2/3. His critical wave-number Ic, cc A**. 
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It is in the values of the numerical coefficients that the present results are un- 
certain. The fudge factor CL which relates d and S ( =ad) only affects here the value 
oft, (and not n). Both the porous medium results and the viscous fluid results 
require a M 1.35. This is a not unreasonable value since at  z = 1.35d from (6) 
we have -Pd = 0.18 so our approximation uses about 80% of the layer. The 
free interface requires a w 1.6, a somewhat larger value than for the interface 
on a wall. 

The growth rate n obtained numerically only qualitatively follows q5(r). For 
example, the porous medium results give the asymptotic value n/A2 = 2-5 x 10-3 
~fr 15 yo. This is compatible with (14) and A, = 4n2 provided q5 w 0.2. Inspection 
of figure 21 shows that q5 w 0.2 whenr M 2 or 8 but rises to 0.25 at r = 4. Typically 
the exponential region in the numerical experiments extends to r M 4. Hence our 
prediction is moderately correct but, if anything, something of an underestimate 
by as much as perhaps 20 yo. The viscous fluid data similarly requires q5 z 0.4 
compared with the maximum possible value of 0.47. The values of q5 required for 
the isolated interface are rather higher than &,,. The difference is not very 
large but suggests that A:, which we have taken to be 650 for a free interface, is 
somewhat less and from (19) is more like 100. This seems to me unreasonably low 
and is not compatible with the t ,  data. 

It is worth noting that here the asymptotic growth rate obtained as r+m, 
that is when for example in (20) 7-4 B rl, occurs at  values of r large compared 
with the time to disrupt the layer. Hence estimates of growth rates in flows of the 
above type based on results asymptotic in time should be used with caution. 

One feature of the analysis which has not been explicitly checked is the rela- 
tion of the various time scales to A, as indicated in (12), (14), etc. This is an im- 
portant matter since, when other stabilizing processes are present, such as an 
imposed magnetic field if the fluid is an electrical conductor or the thermal dif- 
fusivity is a rapidly increasing function of temperature due to the diffusion of 
photons, the thermal layer will be considerably thicker before instability sets 
in. The total energy stored in the thermal layer is correspondingly higher and 
there is the possibility that the ultimate disruption of the layer will be more 
violent. 

9. Some speculations about thermal turbulence 
The present results permit us to make a number of comments on the role of the 

thermal sublayer in thermal turbulence. 
The object of our study, the growth of disturbances in a thin thermal layer, 

can be considered as a problem in its own right, quite independently of the prob- 
lem of the sublayer in fully developed turbulence. Indeed, this is how the work 
is presented. Clearly, the relation of these results to the problem of thermal tur- 
bulence must await a detailed study of the evolution of fully developed thermal 
turbulence and in particular of the evolution of the frequency and spatial spectra. 
Nevertheless, visualizations of the temperature and velocity fields in and near the 
sublayer (Elder 1 9 6 7 ~ )  reveal that the major heat transfer process-blobs 
accelerated out of the sublayer-is the same in the initial, proto-sublayer phase 
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and in the fully developed state. At first sight this is somewhat surprising because 
in the initial phase the ambient fluid is a t  rest (and a t  uniform temperature), 
whereas in the mature state the ambient fluid is in vigorous motion. In  the mature 
state the dominant scales of motion correspond to the largest eddies, of typical 
dimension H ,  the fluid depth. Hence the ambient fluid near the sublayer, apart 
from sites of convergence and divergence, is largely a horizontally flowing stream. 
We therefore ask the question, does the presence of this stream affect the growth 
of disturbances in the sublayer? A partial answer to this question has been given 
for the case of an imposed horizontal velocity field on the sublayer. If a typical 
velocity of the horizontal stream is U we have the additional parameter UHIK, 
the Peelet number. In  the author’s study (Elder 1 9 6 7 ~ ) ~  over the range of Peelkt 
numbers 0-103, no qualitative changes were found in the blob production of the 
sublayer. This of course does not answer the question, for we must also investi- 
gate the role of ambient shear and ambient vertical temperature gradients (to 
be published separately) especially those produced by a field of large eddies. 
In  my view, therefore, this investigation forms one of a possible sequence of 
studies each of which attempts to analyse a particular aspect of a field of thermal 
turbulence. 

There are other considerations on the theoretical side which indicate the rele- 
vance of this work to the thermal turbulence problem. Spiegel(1965), in a delight- 
ful paper, emphasizes the success of what lie calls the weak-coupling approxima- 
tion in which the only non-linear term retained in the analysis is that represent- 
ing the vertical flux of heat produced by the vertical velocity fluctuations working 
on the horizontal mean vertical temperature gradient. He refers especially to the 
detailed studies of Herring (1963, 1964). Clearly the reason this approximation 
works as well as it does is that, provided the Prandtl number is not too small, 
the mean temperature gradients are only large near the horizontal boundaries. 
Hence the mean temperature change across the bulk of the flow is very small and 
a very crude representation of the non-linear fluctuating quantities, even putting 
them to zero, cannot affect the essential features of the flow. 

In his pioneering theory Malkus (1954) had emphasized the marginal stability 
character of the sublayer. This idea is further developed in Howard’s (1964) 
view of the intermittent growth and denudation of the sublayer. If we accept 
Howard’s point of view, together with the qualitative laboratory observations 
of the similarity of the sublayer and the proto-sublayer, it is plausible that the 
processes discussed in § 7 are those responsible for the maintenance of the sub- 
layer. 

Finally, the discussion of $ 7  suggests an explanation of one hitherto rather 
puzzling fact. Various experimenters report quite different values of the Rayleigh 
number at  which the flow is ‘turbulent ’. Even allowing for the different ways of 
identifying the turbulent state can hardly explain the wide reported range of 
104-10s. The only possible cause that comes to mind is the effect of possibly differ- 
ent noise sources on the boundaries. With this in mind let us therefore attempt to 
write down a criterion for the occurrence of thermal turbulence. We take as our 
model that indicated at the end of Q 2, namely a field of large eddies with sublayers 
on the wall. Let us make the hypothesis that thermal turbulence will not be 
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possible unless a disturbance growing in the sublayer, and being swept along by 
the large eddy field, grows sufficiently to produce a blob. The longest time a 
disturbance will have to grow is set therefore by the time to travel a horizontal 
distance of O(l) ,  the horizontal large eddy scale, in the velocity field of a large 
eddy whose velocities? are KAt  where K = O( 1). Hence the time a disturbance 
has to grow is no more than 

During this time the disturbance grows to an amplitude determined by T = tff/tc 
and the noise input E’ where t, is given by (18). Thus blobs appear in the sublayer 
provided T = ~ ( 6 ’ )  is sufficiently large, that is for 

tff N l/KA+. ( 2 2 )  

A > A, = (0*25K)6~6A:. (23) 

We see how very sensitive A, is to r and therefore to E’.  

This argument can be put another way. What we are really saying is that the 
motion will be turbulent if the time of development of disturbances in the sub- 
layer is shorter than the orbit time of the large eddies. If this is the case, the large 
eddies and the sublayer become decoupled and to a degree behave independently. 
This idea of a range of weakly coupled motions of different scales is a well known 
one in turbulence theory. 

We begin to see a little more clearly one of the problems facing the analyst in 
developing a complete dynamical theory of thermal turbulence. The peculiar 
behaviour of the sublayer, seen here as a low pass filter whose cut-off frequency 
is increased as the disturbance grows only to be reduced again after the blob 
is released, must be included in any such theory. For the moment it seems to me 
to be more revealing to develop simple phenomenological descriptions of isolated 
features of the flow. 

The numerical studies were performed with the author’s programming system 
Knees on the University of Cambridge Mathematical Laboratory’s Titan. I am 
most grateful for the use of this excellent facility. The apparatus was constructed 
by Mr David Cheesley. The work was supported by the British Admiralty and a 
grant from IBM (United Kingdom). 
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FIGURE 3. Photographic sequence of the development of high Rayleigh number flow in a 
Hele-Shaw cell. A full view showing a 16 ern width of a 4 cm deep layer. The numbers are 
the times in seconds after suddenly elevating the temperature of the bottom of the layer. 
The first motion is observed at about 60 sec. Fluid, silicon oil MS 2 O O j l O O  cs; A = 250. 
The two circular patches of light, 1 and 2 cm above the base are thcrrnocouple fittings 
sccn through the rear wall of thc cell. 
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